sin(π/3+B)sin(π/3-B)
=(√3/2*cosB+1/2sinB)(√3/2*cosB-1/2sinB)
=3/4*(cosB)^2-1/4(sinB)^2
sin²A=sin(π/3+B)sin(π/3-B)+sin²B
=3/4*(cosB)^2-1/4(sinB)^2+(sinB)^2
=3/4[(cosB)^2+(sinB)^2]
=3/4 A
sin(π/3+B)sin(π/3-B)
=(√3/2*cosB+1/2sinB)(√3/2*cosB-1/2sinB)
=3/4*(cosB)^2-1/4(sinB)^2
sin²A=sin(π/3+B)sin(π/3-B)+sin²B
=3/4*(cosB)^2-1/4(sinB)^2+(sinB)^2
=3/4[(cosB)^2+(sinB)^2]
=3/4 A