弦AB的中点Q(x,y)
xA+xB=2x,yA+yB=2y
k(AB)=k(PQ)
(yA-yB)/(xA-xB)=(y-2)/(x-3)
[(xA)^2/25+(yA)^2/16]-[(xB)^2/25+(yB)^2/16]=1-1
16*(xA+xB)*(xA-xB)+25*(yA+yB)*(yA-yB)=0
16*2x+25*2y*(yA-yB)/(xA-xB)=0
16x+25y*(y-2)/(x-3)=0
(x-1.5)^2/(61/16)+(y-1)^2/(61/25)=1
弦AB的中点Q(x,y)
xA+xB=2x,yA+yB=2y
k(AB)=k(PQ)
(yA-yB)/(xA-xB)=(y-2)/(x-3)
[(xA)^2/25+(yA)^2/16]-[(xB)^2/25+(yB)^2/16]=1-1
16*(xA+xB)*(xA-xB)+25*(yA+yB)*(yA-yB)=0
16*2x+25*2y*(yA-yB)/(xA-xB)=0
16x+25y*(y-2)/(x-3)=0
(x-1.5)^2/(61/16)+(y-1)^2/(61/25)=1