将正弦定理b=2R*sinB,c=2R*sinC,代入已知条件得
tanA/tanB=(√2sinC -sinB)/sinB
化简得
(sinA/cosA)/(sinB/cosB)=(√2sinC -sinB)/sinB
(sinA/cosA)/(sinB/cosB)=(√2sinC -sinB)/sinB
sinAcosB/(cosAsinB)=(√2sinC -sinB)/sinB
sinAcosB/cosA=√2sinC –sinB
sinAcosB=√2sinCcosA –cosAsinB
sinAcosB+cosAsinB=√2sinCcosA
sin(A+B)=√2sinCcosA
sinC=√2sinCcosA
cosA=√2/2
所以A=45°.