解题思路:首先将P点固定于一处,设两圆心分别为C1,C2,则r1=1,r2=c且C1,C2为椭圆的焦点,PC1≤PM+MC1,PC2≤PN+NC2,PM+PN=PM+MC1+PN+NC2-(MC1+NC2)≥PC1+PC2-(MC1+NC2)=8,所以PM+PN的最小值为8.PM+PN=PM+MC1+PN+NC2-(MC1+NC2)≤PC1+PC2+(MC1+NC2)=12.所以PM+PN的最大值为12.
首先将P点固定于一处,设两圆心分别为C1,C2,
则r1=1,r2=c且C1,C2为椭圆的焦点,
PC1≤PM+MC1
PC2≤PN+NC2
PM+PN=PM+MC1+PN+NC2-(MC1+NC2)≥PC1+PC2-(MC1+NC2)
=2a-(r1+r2)
=10-2=8
所以,PM+PN的最小值为8.
PM+PN=PM+MC1+PN+NC2-(MC1+NC2)≤PC1+PC2+(MC1+NC2)
=2a+(r1+r2)
=10+2=12.
所以,PM+PN的最大值为12.
故选C.
点评:
本题考点: 圆与圆锥曲线的综合.
考点点评: 本题考查圆的性质和应用,解题时要注意椭圆的性质和应用.