由已知:a+b=-c,b+c=-a,a+c=-b,
原式=a/b+a/c+b/c+b/a+c/a+c/b
=(a+c)/b+(a+b)/c+(b+c)/a
=-b/b-c/c-a/a
=-3.
a^3+b^3
=(a+b)(a²-ab+b²)
=(a+b)[(a+b)²-3ab]
∵a+b=1,
∴a^3+b^3=1-3ab
∴a^3+b^3+3ab=1.
由已知:a+b=-c,b+c=-a,a+c=-b,
原式=a/b+a/c+b/c+b/a+c/a+c/b
=(a+c)/b+(a+b)/c+(b+c)/a
=-b/b-c/c-a/a
=-3.
a^3+b^3
=(a+b)(a²-ab+b²)
=(a+b)[(a+b)²-3ab]
∵a+b=1,
∴a^3+b^3=1-3ab
∴a^3+b^3+3ab=1.