设函数f(x)在[0,1]连续,在(0,1)可导,且f(1)=f(0)=0,对于点x0∈(0,1),证明存在点ξ∈(0,
1个回答
令g(x)=f(x)-f(x0).则有,g(1)=g(0).用罗儿尔定理,可得至少存在一点g'(&)=0即f'(&)-f(x0)=0
(用手机打不出那个符号,见谅.)
相关问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1
设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f([1/2])=1,试证明至少存在一点ξ
设f(x)在[0,x]上连续,在(0,x)内可导,且f(0)=0,证明:存在ξ∈(0,x),使得f(x)=(1+ξ)f’
设函数f(x)在[0,1]上连续且不恒为零,在(0,1)内可导,且f(0)=0,证明:存在ξ∈(0,1),使得f(ξ)f
已知函数f(x)在[0,1]连续,在(0,1)可导,且f(1)=0,证明在(0,1)内至少存在一点ξ∈(0,1),使f(
设函数f(x)在[0,1]上连续,且f(1)=0,f(0)=1,求证:存在一点ξ∈[0,1]使得f`(ξ)=-f(ξ)/
f(x)在[0,1]连续,在(0,1)可导,f(0)=f(1)=0,证(0,1)存在ξ,f'(ξ)+2f(ξ)=0
设函数f(x)在[0,1]上可导,且满足f(1)=0,求证:在(0,1)内至少存在一点ξ,使f′(ξ)=-f(ξ)ξ.(
设f(x)在[0a]上连续,在(0a)内可导,且f'(a)=0,证明存在一点ξ满足f(ξ)+ξ f'(ξ)=0
已知f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0求证至少存在一点ξ∈(0,1).使f'(ξ)=-f(ξ