一根21厘米的铁丝,分成n段(每段长度不小于1厘米),任意3段不能围成三角形,n的最大值是?

1个回答

  • 设各段长度分别为a1、a2、a3、...、an,不妨设a1≦a2≦a3≦...≦an;设i、j、k是任意3段,且1≦i<j<k≦n,显然有ai≦aj≦ak;如果满足ai+aj≦ak,则任意3段不能构成三角形,据此可设计每段的长度;为使n尽可能大,每段应尽可能小,但每段长不能小于1cm;根据这个原则,各段长度为下列值时n最大:1、1、2、3、5、9,所以n最大为6.该数列前5项为菲波那契数列前5项.