B.λ(向量AB/向量AB的模+向量AC/向量AC的模)这个就表示过A点的角平分线上的向量,所以P点一定在角平分线上.
空间向量O为空间任意一点,A,B,C是平面上不共线的三点,动点P满足向量OP=向量OA+λ(向量AB/向量AB的模+向量
1个回答
相关问题
-
O是平面上一点,A,B,C是平面上不共线三点,动点P满足向量OP=向量OA+λ((向量AB+向量AC),λ∈[0,1/2
-
设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB
-
已知△ABC中,向量AB=a,向量AC=b,对于平面ABC上任意一点O,动点P满足向量OP=向量OA+λa+λb,试问动
-
已知O是平面内的一个定点,A,B,C是平面内不共线的三个点,动点P满足向量OP=向量OA+λ(向量AB/向量AB的模+向
-
一道解析几何轨迹问题若A、B、C是不共线的三点,O是空间中的任意一点,向量OP=向量OA+λ(2向量AB+向量BC),则
-
O是平面a上一点,A,B,C是平面a上不共线的三点,平面a内的动点P满足向量op=向量OA+t(向量AB+向量AC),若
-
已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量O
-
已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满足向量OP=(向量OB+向量OC)/2+λ(向量AB/(|向量
-
已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量
-
o是平面上的一点,A B C是平面上的不共线的三个点,动点P满足OP向量=OA向量+λ(AB向量/AB向量的模 + AC