设a=4k,那么b=3k
a/(a+b)+b/(a-b)-a^2/(a^2-b^2)
=a(a-b)/(a+b)(a-b)+b(a+b)/(a+b)(a-b)-a^2/(a+b)(a-b)
=[a(a-b)+b(a+b)-a^2]/(a+b)(a-b)
=(a^2-ab+ab+b^2-a^2)/[(a+b)(a-b)]
=b^2/(a+b)(a-b)
=9k²/7k²
=9/7
设a=4k,那么b=3k
a/(a+b)+b/(a-b)-a^2/(a^2-b^2)
=a(a-b)/(a+b)(a-b)+b(a+b)/(a+b)(a-b)-a^2/(a+b)(a-b)
=[a(a-b)+b(a+b)-a^2]/(a+b)(a-b)
=(a^2-ab+ab+b^2-a^2)/[(a+b)(a-b)]
=b^2/(a+b)(a-b)
=9k²/7k²
=9/7