解题思路:(1)由平行线的性质可得∠QPW=∠MNF,∠PQW=NFM,故有△FMN∽△QWP;
(2)当△FMN是直角三角形时,△QWP也为直角三角形,当MF⊥FN时,证得△DFM∽△GFN,有DF:FG=DM:GN,得到4-x=2x,求得x此时的值,当MG⊥FN时,点M与点A重合,点N与点G重合,此时x=AD=4;
(3)需要分类讨论:)①当0≤x≤4,即M从D到A运动时,只有当x=4时,MN的值最小,等于2;
②当4<x≤6时,MN2=AM2+AN2=(x-4)2+(6-x)2=2(x-5)2+2,由二次函数的性质来求最值.
(1)根据三角形中位线定理得 PQ∥FN,PW∥MN,
∴∠QPW=∠PWF,∠PWF=∠MNF,
∴∠QPW=∠MNF.
同理∠PQW=∠NFM,
∴△FMN∽△QWP;
(2)由于△FMN∽△QWP,故当△QWP是直角三角形时,△FMN也为直角三角形.
作FG⊥AB,则四边形FCBG是正方形,有GB=CF=CD-DF=4,GN=GB-BN=4-x,DM=x,
①当MF⊥FN时,
∵∠DFM+∠MFG=∠MFG+∠GFN=90°,
∴∠DFM=∠GFN.
∵∠D=∠FGN=90°,
∴△DFM∽△GFN,
∴DF:FG=DM:GN=2:4=1:2,
∴GN=2DM,
∴4-x=2x,
∴x=[4/3];
②当MN⊥FN时,点M与点A重合,点N与点G重合,
∴x=AD=GB=4.
∴当x=4或[4/3]时,△QWP为直角三角形,当0≤x<[4/3],[4/3]<x<4时,△QWP不为直角三角形.
(3)①当0≤x≤4,即M从D到A运动时,只有当x=4时,MN的值最小,等于2;
②当4<x≤6时,MN2=AM2+AN2=(x-4)2+(6-x)2
=2(x-5)2+2
当x=5时,MN2=2,故MN取得最小值
2,
故当x=5时,线段MN最短,MN=
2.
点评:
本题考点: 勾股定理的逆定理;平行线的性质;三角形中位线定理;矩形的性质;相似三角形的判定与性质.
考点点评: 本题为动点变化的题,主要利用了相似三角形的判定和性质,平行线的性质求解.