若要A+aE可逆,只需|A+aE|≠0,即a不是-A的特征值,亦即-a不是A的特征值.因此a≠-1,-2,3即可.观察选项,只有A+E可逆,选B.
A为三阶矩阵,E为三阶单位矩阵A的三个特征值分别为1,2,-3,则下列矩阵中是可逆矩阵的是:A.A-E B.A+E C.
4个回答
相关问题
-
设三阶矩阵 A的秩为2,矩阵E-3A 不可逆,|E+A|=0 ,则 A的三个特征值为______
-
设A为n阶可逆矩阵,E为n阶单位矩阵,刚A-1[A,E]= _______
-
设A,B为N阶矩阵,满足2(B^-1)A=A-4E,E为N阶单位矩阵,证明:B-2E为可逆矩阵,并求它的逆矩阵
-
n阶矩阵A的n个特征值为1.2……n,E为n阶单位矩阵,计算行列式|A+3E|
-
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值______
-
线性代数题 A为三阶矩阵 E为单位矩阵 A^2-E=(A-E)(A+E)=(A+E)(A-E)吗?
-
设2阶矩阵A相似于矩阵B=(2,0 2,-3) E为2阶单位矩阵 则与矩阵E-A相似的矩阵是
-
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值(|A|λ)
-
设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=0,则E-A和E+A是否可逆
-
一道线性代数题目已知三阶矩阵A的特征值为 1,-1,2;则下列矩阵中可逆的为 2E+A.为什么啊,