四边形ABCD是边长为a的正方形,分别以点ABCD为圆心,a为半径画弧,相交于点EFGH,求EFHG的面积

1个回答

  • 以前回答过:

    假设 E 离 A、B 较近,F 离 B、C 较近,G 离 C、D 较近,H 离 A、D 较近.

    则:

    连接 AF、AG,则有 ∠FAD = ∠GAB = 60°.

    ∴ ∠FAG = ∠FAD + ∠GAB - ∠DAB

    = 60° + 60°+ 90°

    = 30°

    {①

    ∴弧FG = 2aπ * 30°/ 360° = aπ/6

    同理 弧EF = 弧FG = 弧GH = 弧HE = aπ/6

    ∴相交部分周长为 4aπ/6 = 2aπ/3

    }

    {②

    ∴扇形AFG面积 S1 = πaa * 30°/ 360°= πaa/12

    设正方形中心点为 O ,连接 OA、OF,延长 OF,交 AD 于 P

    则有:FP ⊥ AD,AP = a/2

    又∵ AF = a

    ∴根据勾股定理,FP = (a/2)*√3

    ∴OF = PF - OP = (a/2)*√3 - a/2 = a/2 * (- 1 + √3)

    ∴S△AOF = OF * AP / 2 = aa/8 * (- 1 + √3)

    同理 S△AOG = S△AOF

    设 OF、OG、弧FG 围成图形的面积为 S2,则:

    S2 = S1 - S△AOF - S△AOG

    = S1 - 2 * S△AOF

    = πaa/12 - 2 * aa/8 * (- 1 + √3)

    = aa/4 * (π/3 + 1 - √3)

    由题意知,四条弧相交部分面积 = 4 * S2 = aa * (π/3 + 1 - √3)

    }