本题可用相关点法求
设P(x0,y0)为圆上一点,Q(x,y)为P关于直线x-y+2=0的对称点,则必须满足:
[(y-y0)/(x-x0)] * k = -1 ,其中k是直线x-y+2=0的斜率,k = 1
(x0+x)/2 - (y0+y)/2 + 2 = 0
联立:
x0 = y -2
y0 = x+2
∵P在圆上,
∴(y-2)^2 + (x+2)^2 + 4(y-2) - 4(x+2) + 4 = 0
x^2 + y^2 = 4
本题可用相关点法求
设P(x0,y0)为圆上一点,Q(x,y)为P关于直线x-y+2=0的对称点,则必须满足:
[(y-y0)/(x-x0)] * k = -1 ,其中k是直线x-y+2=0的斜率,k = 1
(x0+x)/2 - (y0+y)/2 + 2 = 0
联立:
x0 = y -2
y0 = x+2
∵P在圆上,
∴(y-2)^2 + (x+2)^2 + 4(y-2) - 4(x+2) + 4 = 0
x^2 + y^2 = 4