(2+1)[(2)2+1][(2)4+1][(2)8+1]+1
=(2-1)(2+1)(2^2+1)(2^4+4)(2^8+1)+1
=(2^2-1)(2^2+1)(2^4+4)(2^8+1)+1
=(2^4-1)(2^4+4)(2^8+1)+1
=(2^8-1)(2^8+1)+1
=2^16-1+1
=2^16
a-1/a=1
两边平方
a^2-2*a*1/a+1/a^2=1
a^2-2+1/a^2=1
所以a^2+1/a^2=3
(2+1)[(2)2+1][(2)4+1][(2)8+1]+1
=(2-1)(2+1)(2^2+1)(2^4+4)(2^8+1)+1
=(2^2-1)(2^2+1)(2^4+4)(2^8+1)+1
=(2^4-1)(2^4+4)(2^8+1)+1
=(2^8-1)(2^8+1)+1
=2^16-1+1
=2^16
a-1/a=1
两边平方
a^2-2*a*1/a+1/a^2=1
a^2-2+1/a^2=1
所以a^2+1/a^2=3