y=(x^2-3x+6)/(x-2) (x>2)
y=(x²-4x+x-2+8)/(x-2)
y=[(x-2)²+(x-2)+8]/(x-2)
令x-2=t,则t>0
y=[(x-2)²+(x-2)+8]/(x-2)
=(t²+t+8)/t
=t+1+8/t
=t+8/t+1 (t>0)
≥2√(t*8/t)+1
=4√2+1
当且仅当t=8/t即t=2√2,x=2+2√2时等号成立
所以y=x^2-3x+6/x-2(x>2)的取值范围是:y≥4√2+1
y=(x^2-3x+6)/(x-2) (x>2)
y=(x²-4x+x-2+8)/(x-2)
y=[(x-2)²+(x-2)+8]/(x-2)
令x-2=t,则t>0
y=[(x-2)²+(x-2)+8]/(x-2)
=(t²+t+8)/t
=t+1+8/t
=t+8/t+1 (t>0)
≥2√(t*8/t)+1
=4√2+1
当且仅当t=8/t即t=2√2,x=2+2√2时等号成立
所以y=x^2-3x+6/x-2(x>2)的取值范围是:y≥4√2+1