1.(a+b+c)^2-(b-c)^2=12
(a+b+c)^2=12+(b-c)^2>=12
a+b+c>=2√3,最小值为2√3,当b=c时取得
2.y'=3x^2+4x
切点为(x,x^3+2x^2+a),斜率为y'=3x^2+4x=f(x)/x=(x^3+2x^2+a)/x
2x^3+2x^2-a=0有三个不同实根.
f(x)=2x^3+2x^2-a
f'(x)=6x^2+4x=2x(3x+2)=0-->x=0,-2/3
f(0)=-a为极小值
f(-2/3)=8/27-a为极大值
为使有三个实根,必有:
f(0) a>0
f(-2/3)>0--> a