an+a(n+1)=-3n
n取n+1得a(n+1)+a(n+2)=-3(n+1)
上下两式相减得a(n+2)=a(n)-3
故a(2n)=-1-3n,a(2n+1)=1-3n
cn=an·a(n+1)-9nn/4
c(2n)=9nn-1-9nn=-1
c(2n+1)=(1-3n)(-4-3n)-9(4nn+4n+1)/4=-25/4
所以C1+C2+C3+.+C2000=1000(-1-25/4)=-7250
an+a(n+1)=-3n
n取n+1得a(n+1)+a(n+2)=-3(n+1)
上下两式相减得a(n+2)=a(n)-3
故a(2n)=-1-3n,a(2n+1)=1-3n
cn=an·a(n+1)-9nn/4
c(2n)=9nn-1-9nn=-1
c(2n+1)=(1-3n)(-4-3n)-9(4nn+4n+1)/4=-25/4
所以C1+C2+C3+.+C2000=1000(-1-25/4)=-7250