1/[n(n+1)(n+2)]
=1/2*[1/n(n+1)-1/(n+1)(n+2)]
所以原式=1/2*[1/1*2-1/2*3+……+1/n(n+1)-1/(n+1)(n2)]
=1/2*[1/1*2-1/(n+1)(n+2)]
=(n²+3n)/(4n²+12n+8)
1/[n(n+1)(n+2)]
=1/2*[1/n(n+1)-1/(n+1)(n+2)]
所以原式=1/2*[1/1*2-1/2*3+……+1/n(n+1)-1/(n+1)(n2)]
=1/2*[1/1*2-1/(n+1)(n+2)]
=(n²+3n)/(4n²+12n+8)