(1)证明:连结OC
∵OE⊥AC
∴AE=CE
∴FA=FC
∴∠FAC=∠FCA
∵OA=OC
∴∠OAC=∠OCA
∴∠OAC+∠FAC=∠OCA+∠FCA
即∠FAO=∠FCO
∵FA与⊙O相切,且AB是⊙O的直径
∴FA⊥AB
∴∠FCO=∠FAO=90°
∴PC是⊙O的切线
(1)证明:连结OC
∵OE⊥AC
∴AE=CE
∴FA=FC
∴∠FAC=∠FCA
∵OA=OC
∴∠OAC=∠OCA
∴∠OAC+∠FAC=∠OCA+∠FCA
即∠FAO=∠FCO
∵FA与⊙O相切,且AB是⊙O的直径
∴FA⊥AB
∴∠FCO=∠FAO=90°
∴PC是⊙O的切线