解题思路:由∠1=∠ACB,利用同位角相等,两直线平行可得DE∥BC,根据平行线的性质和等量代换可得∠3=∠DCB,故推出CD∥FH,再结合已知FH⊥AB,易得CD⊥AB.
CD⊥AB;理由如下:
∵∠1=∠ACB,
∴DE∥BC,∠2=∠DCB,
又∵∠2=∠3,
∴∠3=∠DCB,
故CD∥FH,
∵FH⊥AB
∴CD⊥AB.
点评:
本题考点: 平行线的判定与性质;垂线.
考点点评: 本题是考查平行线的判定和性质的基础题,比较容易,稍作转化即可.
解题思路:由∠1=∠ACB,利用同位角相等,两直线平行可得DE∥BC,根据平行线的性质和等量代换可得∠3=∠DCB,故推出CD∥FH,再结合已知FH⊥AB,易得CD⊥AB.
CD⊥AB;理由如下:
∵∠1=∠ACB,
∴DE∥BC,∠2=∠DCB,
又∵∠2=∠3,
∴∠3=∠DCB,
故CD∥FH,
∵FH⊥AB
∴CD⊥AB.
点评:
本题考点: 平行线的判定与性质;垂线.
考点点评: 本题是考查平行线的判定和性质的基础题,比较容易,稍作转化即可.