等式两边取对数得到
lny=ln|x-1| +2ln|x-2|+3ln|x-3|
再等式两边对x求导
y'/y=1/(x-1) +2/(x-2)+3/(x-3)
所以
y'=y*[1/(x-1) +2/(x-2)+3/(x-3)]
代入y=(x-1)(x-2)²(x-3)³
所以
y'=(x-2)²(x-3)³ + 2(x-1)(x-2)(x-3)³+3(x-1)(x-2)²(x-3)²
等式两边取对数得到
lny=ln|x-1| +2ln|x-2|+3ln|x-3|
再等式两边对x求导
y'/y=1/(x-1) +2/(x-2)+3/(x-3)
所以
y'=y*[1/(x-1) +2/(x-2)+3/(x-3)]
代入y=(x-1)(x-2)²(x-3)³
所以
y'=(x-2)²(x-3)³ + 2(x-1)(x-2)(x-3)³+3(x-1)(x-2)²(x-3)²