设f(x)=ln(1+x)
则f'(x)=1/(1+x)
在[0,x]上应用拉格朗日中值定理
存在ξ∈(0,x)
使得
ln(1+x)-ln(1+0)=f'(ξ)(x-0)
即
ln(1+x)=f'(ξ)·x
由于0<ξ<x
所以1/(1+x)<f'(ξ)<1/x
设f(x)=ln(1+x)
则f'(x)=1/(1+x)
在[0,x]上应用拉格朗日中值定理
存在ξ∈(0,x)
使得
ln(1+x)-ln(1+0)=f'(ξ)(x-0)
即
ln(1+x)=f'(ξ)·x
由于0<ξ<x
所以1/(1+x)<f'(ξ)<1/x