由题意设PQ方程为y=k(x-2)
代入椭圆方程得
(3k^2+1)x^2-12k^2.x+12k^2-6=0
x1+x2=12k^2/(3k^2+1),x1x2=(12k^2-6)/(3k^2+1)
设P(x1,y1),Q(x2,y2),则P1(x1,-y1)
kp1q=(y2+y1)/(x2-x1)
P1Q方程为y=(y2+y1)/(x2-x1).(x-x2)+y2.
y=0时,(y2+y1)/(x2-x1).(x-x2)+y2=0.
x=(x1y2+x2y1)/(y1+y2)
=2[x1x2-(x1+x2)]/(x1+x2-4)
=3.
过定点(3,0)
这符号不好打。