数列(an),a1=1,当n≥2,其前n项和Sn满足Sn^2=an(Sn-1)证(1/Sn)是等差数列.设bn=log以

1个回答

  • n>1时

    an=Sn-S(n-1)

    (Sn)^2=[Sn-S(n-1)](Sn-1)

    =(Sn)^2-Sn+S(n-1)-SnS(n-1)

    因此S(n-1)-Sn=SnS(n-1)

    由题知道Sn不等于0

    两边同时除以SnS(n-1)得

    1/Sn-1/S(n-1)=1

    因此(1/Sn)是等差数列

    首项为1/S1=1/a1=1,公差为1

    因此1/Sn=1+(n-1)*1=n

    因此Sn=1/n

    S(n+2)=1/(n+2)

    Sn/S(n+2)=(n+2)/n

    bn=log(2)[(n+2)/n]=log(2)(n+2)-log(2)n

    当n为奇数时

    Tn=1og(2)3-log(2)1+log(2)4-log(2)2+…+log(2)(n+1)-log(2)(n-1)+log(2)(n+2)-log(2)n

    =log(2)(n+2)-log(2)1+log(2)(n+1)-log(2)2

    =log(2)(n+2)+log(2)(n+1)-1

    当n为偶数时

    Tn=1og(2)3-log(2)1+log(2)4-log(2)2+…+log(2)(n+1)-log(2)(n-1)+log(2)(n+2)-log(2)n

    =log(2)(n+2)-log(2)2+log(2)(n+1)-log(2)1

    =log(2)(n+2)+log(2)(n+1)-1

    综上所述

    Tn

    =log(2)(n+2)+log(2)(n+1)-1

    =log(2)(n+2)+log(2)(n+1)-log(2)2

    =log(2)[(n+2)(n+1)/2]

    Tn≥6则

    log(2)[(n+2)(n+1)/2]≥6

    即log(2)[(n+2)(n+1)/2]≥log(2)(2^6)

    又f(x)=log(2)x是增函数,2^6=64

    因此

    (n+2)(n+1)/2≥64

    化简得到

    n^2+3n-126≥0

    由n>0解得

    n≥(-3+√516)/2

    又22