向量AB=向量OB-向量OA=(1,a-1)
向量AC=向量OC-向量OA=(2,-b-1)
三点共线,所以有2:1=(-b-1):(a-1)
2(a-1)=-b-1
2a+b=1
即a+(b/2)=1/2
所以1/a+2/b当1/a=2/b即a=b/2时取最小值,此时a=b/2=1/4
1/a+2/b>=4+4=8
最小值为8
向量AB=向量OB-向量OA=(1,a-1)
向量AC=向量OC-向量OA=(2,-b-1)
三点共线,所以有2:1=(-b-1):(a-1)
2(a-1)=-b-1
2a+b=1
即a+(b/2)=1/2
所以1/a+2/b当1/a=2/b即a=b/2时取最小值,此时a=b/2=1/4
1/a+2/b>=4+4=8
最小值为8