y''+2y'+5y=0
r^2+2r+5=0
r1=-1-2i r2=-1+2i
y=C1e^(-x)cos2x+C2e^(-x)sin2x
设y =acosx+bsinx
5y =5acosx+5bsinx
2y' =-2asinx+2bcosx
y''=-acosx-bsinx
y''+2y'+5y=(-a+2b+5a)cosx+(-b-2a+5b)sinx
y''+2y'+5y=cosx
4b-2a=0 a=2b
4a+2b=1 10b=1,b=1/10 a=1/5
y=cosx/5+sinx/10
y''+2y'+5y=cosx
通解y=C1e^(-x)cos2x+C2e^(-x)sin2x+cosx/5+sinx/10