如图1,已知Rt△ABC中,AB=BC,AC=2,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板

1个回答

  • (1)∵AB=BC,AC=2,

    ∴CD=

    1

    2 AD=1,

    则△BCD的面积是

    1

    2 ×CD?BD=

    1

    2 ×1×1=

    1

    2 ;

    (2)作DQ⊥BC,DP⊥AB分别于点Q,P,

    又∵AB=BC,CD=AD,

    ∴∠A=∠C,

    ∴△CDQ≌△ADP,

    ∴DQ=DP,

    则四边形BQDP是正方形.

    ∵∠EDQ+∠QDN=∠NDP+∠QDN

    ∴∠EDQ=∠NDP

    又∵∠MQD=∠NPD

    ∴△MDQ≌△NDP,

    ∴DM=DN,

    ∴直角三角板DEF绕D点按顺时针方向旋转30度,此条件下重叠部分的面积等于正方形BQDP的面积是DQ 2=1 2=1.

    (3)DM=DN的结论仍成立,面积不会变.