假设存在正数m,
则有x1+x2=4m-8
x1x2=4m^2
则x1^2+x2^2
=(x1+x2)^2-2x1x2
=(4m-8)^2-8m^2
=8m^2-64m+64
要使x1^2+x2^2=136
即8m^2-64m+64=136
也就是m^2-8m-9=0
解得m=9
假设存在正数m,
则有x1+x2=4m-8
x1x2=4m^2
则x1^2+x2^2
=(x1+x2)^2-2x1x2
=(4m-8)^2-8m^2
=8m^2-64m+64
要使x1^2+x2^2=136
即8m^2-64m+64=136
也就是m^2-8m-9=0
解得m=9