题目应该是这样吧
如图,三角形ABC,AB=AC,D为AB上一点,延长AC至E,且CE=BD,连接DE交BC于G,求证DG=GE
证明如下:
延长BC至F,连接EF,使EF//AB
在△CEF中
∠B=∠ACB(等要三角形底角)
∠ACB=∠FCE(对顶角)
∠B=∠EFC(内错角)
所以∠EFC=∠FCE 得EF=EC=BD
在△BDG和△GEF中
EF=BD
∠B=∠EFC
∠CGE=∠BGD
所以△BDG和△GEF全等
所以DG=GE
题目应该是这样吧
如图,三角形ABC,AB=AC,D为AB上一点,延长AC至E,且CE=BD,连接DE交BC于G,求证DG=GE
证明如下:
延长BC至F,连接EF,使EF//AB
在△CEF中
∠B=∠ACB(等要三角形底角)
∠ACB=∠FCE(对顶角)
∠B=∠EFC(内错角)
所以∠EFC=∠FCE 得EF=EC=BD
在△BDG和△GEF中
EF=BD
∠B=∠EFC
∠CGE=∠BGD
所以△BDG和△GEF全等
所以DG=GE