解题思路:根据直角三角形的两锐角互余即可证得∠FAG=∠ODF,进而证明△OAE≌△ODF,根据全等三角形的对应边相等即可证得OE=OF.
证明:在△ADE中,
∵OA⊥DE,DF⊥AE,
∴∠FAG+∠AFG=∠ODF+∠OFD=90°.
又∵∠AFG=∠OFD,
∴∠FAG=∠ODF,
∵四边形ABCD是正方形,
∴OA=OD,
在△OAE和△ODF中,
∠FAG=∠ODF
OA=OD
∠AOE=∠DOF,
∴△OAE≌△ODF(ASA),
∴OE=OF.
点评:
本题考点: 全等三角形的判定与性质;正方形的性质.
考点点评: 本题考查了全等三角形的判定与性质,和正方形的性质,正确证明三角形全等是关键.