Sn = 2an -1
n=1
a1=1
an = Sn - S(n-1)
= 2an - 2a(n-1)
an = 2a(n-1)
an/a(n-1) = 2
an/a1 = 2^(n-1)
an = 2^(n-1)
1/[an.a(n+1)] = 1/2^(2n-1)
Tn=1/(a1a2)+1/(a2a3)+…+1/(ana(n+1))
= 1/2^1+ 1/2^3+...+1/2^(2n-1)
= (1/2)[ 1- (1/2)^(2n)]/(1- 1/4)
= (2/3)[1-(1/2)^(2n)]