(1)∵a[n]=S[n-1]+2 (n>=2)
∴a[n+1]=S[n]+2
将上述两式相减,得:a[n+1]-a[n]=a[n]
即:a[n+1]/a[n]=2
∵a[1]=2
∴a[n]是首项和公比都是2的等比数列
即:a[n]=2*2^(n-1)=2^n
(2)答:存在最大的正整数k.
∵b[n]=1/log[2]a[n]=1/log[2]2^n=1/n
∴T[n]=b[n+1]+b[n+2]+…+b[2n]
=1/(n+1)+1/(n+2)+...+1/(2n)
>1/(2n)+1/(2n)+...+1/(2n)
=1/2
令:k/12=1/2,解得:k=6
∴存在最大的正整数k=6,使得对于任意的正整数n,有T[n]>k/12