求不定积分,用换元法!1)∫1/根号(x^2+1)^3 dx2)∫1/根号x+立方根号x dx

1个回答

  • 1) 令:x=tant ,√(x^2+1)^3 = sec³t ,cost = 1/√(x^2+1) ,dx = sec²t dt

    ∫1/√(x^2+1)^3 dx

    =∫1/sec³t * (sec²t dt)

    =∫cost dt

    = sint + C

    = tant*cost + C

    = x/√(x^2+1) + C

    2)令:x=t^6 ,

    ∫1/[√x + ³√x ] dx

    =∫1/[t² + t³] (6t^5 dt)

    = 6*∫t^3/[1 + t] dt

    = 6*∫[(t^3+1)-1]/[1 + t] dt

    = 6*∫[(t^2 - t +1) -1/(1+t) ]dt

    = 2*t^3 - 3*t^2 + 6*t -6*ln(1+t) + C

    = 2*√x - 3*³√x + 6*x^(1/6) - 6*ln(1+x^(1/6)) + C