解题思路:由CD是高且EF⊥AB可知,CD∥EF,所以∠DCB=∠2,再由∠1=∠2知∠DCB=∠1,所以DG与BC平行.
DG与BC的位置关系为平行,理由如下:
∵CD是△ABC的高,
∴CD⊥AB,
又∵EF⊥AB,
∴CD∥EF,
∴∠DCB=∠2,
又∠1=∠2,
∴∠DCB=∠1,
∴DG∥BC,
DG与BC的位置关系为平行.
点评:
本题考点: 三角形的角平分线、中线和高.
考点点评: 本题通过三角形的高线考查线段平行的性质及判定,是基础题.
解题思路:由CD是高且EF⊥AB可知,CD∥EF,所以∠DCB=∠2,再由∠1=∠2知∠DCB=∠1,所以DG与BC平行.
DG与BC的位置关系为平行,理由如下:
∵CD是△ABC的高,
∴CD⊥AB,
又∵EF⊥AB,
∴CD∥EF,
∴∠DCB=∠2,
又∠1=∠2,
∴∠DCB=∠1,
∴DG∥BC,
DG与BC的位置关系为平行.
点评:
本题考点: 三角形的角平分线、中线和高.
考点点评: 本题通过三角形的高线考查线段平行的性质及判定,是基础题.