向量OA*OB=-1/2.
(1)向量AB=OB-OA,
∴向量AB*(OA+OB)=(OB-OA)(OA+OB)=OB^2-OA^2=1-1=0(改题了).
(2)设OC交AB于D,由垂径定理,∠AOC=∠BOC=π/3,AB⊥OC,OC=2OD=OA+OB,
∴向量AC=OB,
∴向量AB*AC=(OB-OA)*OB=OB^2-OA*OB=1-(-1/2)=3/2.
向量OA*OB=-1/2.
(1)向量AB=OB-OA,
∴向量AB*(OA+OB)=(OB-OA)(OA+OB)=OB^2-OA^2=1-1=0(改题了).
(2)设OC交AB于D,由垂径定理,∠AOC=∠BOC=π/3,AB⊥OC,OC=2OD=OA+OB,
∴向量AC=OB,
∴向量AB*AC=(OB-OA)*OB=OB^2-OA*OB=1-(-1/2)=3/2.