解题思路:(1)连接O根据角平分线性质得出∠FAC=∠BAC,根据垂径定理得出OC⊥BE,求出∠CFE=∠FEB=∠ENC=90°,求出∠OCF=90°,根据切线判定推出即可.
(2)求出AC和BC,证△BCM和△CAB相似,得出比例式,求出CM,即可得出答案.
(1)证明:
连接OC交BE于N,
∵CF⊥AF,CD⊥AB,CF=CD,
∴∠FAC=∠DAC,
∴弧EC=弧BC,
∴OC⊥BE,
∵AB是直径,
∴∠EFC=∠FEN=∠ENC=90°,
∴∠FCO=360°-90°-90°-90°=90°,
即OC⊥CF,
∵OC为半径,
∴CF是⊙O的切线.
(2)∵AB是直径,CD⊥AB,
∴∠ACB=∠CDB=90°,
∴∠CAB+∠CBA=90°,∠BCD+∠CBA=90°,
∴∠BCD=∠CAB,
∵AB=6,cos∠BCD=[5/6],
∴cos∠CAB=[AC/AB]=[5/6],
∴AC=5,
由勾股定理得:BC=
62−52=
11,
∵弧CE=弧BC,
∴∠EAC=∠CBE=∠CAB,
即∠CBM=∠CAB,
∵∠ACB=∠ACB,
∴△CAB∽△CBM,
∴[BC/AC]=[CM/BC],
∵BC=
11,AC=5,
∴CM=[11/5],
∴AM=AC-CM=5-[11/5]=[14/5].
点评:
本题考点: 切线的判定.
考点点评: 本题考查了切线的判定,角平分线性质,相似三角形的性质和判定,垂径定理,圆周角定理的应用,主要考查学生的推理能力,综合性比较强.