∵AD=CD,∠ADC=120°,
∴∠DAC=∠DCA=30°,
∵ΔABC是等边三角形,
∴∠BAC=∠BCA=∠B=60°,
∴∠BAD=∠BCD=90°,
连接BD,则ΔBAD≌ΔBCD(SSS),
∴∠ABD=30°,AD=AB÷√3=4√3/3,
⑴α=15°时,∠ADE=120°-60°-15°=45°,
∴ΔADE是等腰直角三角形,∴AE=AD=4√3/3,
∴BE=4-4√3/3.
⑵当α=30°时,BD平分∠EDF,∠ADF=90°,
∴AE=CF=AD÷√3=4/3,
∴BE=BF=4-4/3=8/3,
∴等边ΔBEF周长=3×8/3=8.
⑶ΔBEF周长始终为8.
理由:
顺时针旋转ΔDCF’到ΔDAH,
∵∠DCF=∠DAE=90°,
∴B、A、H共线,∠HDE‘=60°=∠E’DF‘,
又DH=DF’,DE‘=DE’,
∴ΔDE‘H≌ΔDEF’,
∴E'F'=E'H,
∴ΔBEF周长=BA+BC=8.