S1=a1
S2=a1(1+q)
S3=a1(1+q+q^2)
S1,S3,S2成等差数列
即
s3-s1=s2-s3
1+q+q^2-1=1+q-(1+q+q^2)
q^2+q=-q^2
q=0或-1/2
如果a1-a3=3
a1不等于a3
q不等于0,即q=-1/2
a1(1-1/4)=3
a1=4
所以Sn=4*(1-(-1/2)^n)/(3/2)=8*(1-(-1/2)^n)/3
S1=a1
S2=a1(1+q)
S3=a1(1+q+q^2)
S1,S3,S2成等差数列
即
s3-s1=s2-s3
1+q+q^2-1=1+q-(1+q+q^2)
q^2+q=-q^2
q=0或-1/2
如果a1-a3=3
a1不等于a3
q不等于0,即q=-1/2
a1(1-1/4)=3
a1=4
所以Sn=4*(1-(-1/2)^n)/(3/2)=8*(1-(-1/2)^n)/3