∵∠B,∠C的角平分线BE,CF交于点D
∴∠ABE=∠EBC=1/2∠B;∠ACF=∠FCB=1/2∠C
又∵∠A=70°
∴∠B+∠C=110°
∴∠EBC+∠FCB=1/2(∠B+∠C)=55°
∴∠BDC=180°-∠EBC-∠FCB=125°
∵∠B,∠C的角平分线BE,CF交于点D
∴∠ABE=∠EBC=1/2∠B;∠ACF=∠FCB=1/2∠C
又∵∠A=70°
∴∠B+∠C=110°
∴∠EBC+∠FCB=1/2(∠B+∠C)=55°
∴∠BDC=180°-∠EBC-∠FCB=125°