(1)ED=2AM.理由如下:
△ABC≌△AED(S,A,S)
∴BC=ED,
又∠BAC=90°,AM是BC的中线,
∴AM=1/2BC,即ED=2AM.
(2)∠BAC>90°时,ED=2AM,结论不变.
延长AM到F,使AM=MF,连CF,
△ABM≌△FCM.(S,A,S)
∴CF=AB=AE,
又AC=AD,∠ACF=180°-∠BAC,
∠EAD=180°-∠BAC,
∴∠ACF=∠EAD,
∴△EAD≌△FCA,
∴ED=AF=2AM.
(3)DE=2AM,结论不变.
证明方法同(2).
延长AM到F,使AM=MF,
可证BF=AC=AD,AB=AE,
∠DAE=90°+90°-∠BAC,
∠ABF=180°-∠BAM-∠F=180°-BAC,
∴△ADE≌△BFA,(S,A,S)
∴DE=2AM.