求不定积分 ∫ln(x^2+a^2)dx

3个回答

  • 用分部积分法:∫udv=uv-∫vdu

    ∫ln(x²+a²)dx

    =xln(x²+a²)-∫xd(ln(x²+a²))

    =xln(x²+a²)-∫x*2x/(x²+a²) dx

    =xln(x²+a²)-2∫(x²+a²-a²)/(x²+a²)dx

    =xln(x²+a²)-2∫[1-a²/(x²+a²)]dx

    =xln(x²+a²)-2x+2a²∫1/(x²+a²)dx

    =xln(x²+a²)-2x+2a²*arctan(x/a)/a+C

    =xln(x²+a²)-2x+2aarctan(x/a)+C