(1)化简(1-sinx+cosx)/(1-sinx-cosx)+(1-sinx-cosx)/(1-sinx+cosx)

1个回答

  • =(1-sinx+cosx)/(1-cosx-sinx)+(1-cosx-sinx)/(1+cosx-sinx)

    =[(1+cosx-sinx)(1+cosx+sinx)]/[(1-cosx-sinx)(1+cosx+sinx)]+[(1-cosx-sinx)(1-cosx+sinx)]/[(1+cosx-sinx)(1-cosx+sinx)]

    =(1+2cosx+cos2x)/(-sin2x)+(1-2cosx+cos2x)/(sin2x)

    =(-4cosx)/sin2x

    = -2/sinx

    1-cos2x/2 + +√3(sin2x)/2

    =sin(2x-π/6)+1/2

    x∈【π/4,π/2】

    2x∈【π/2,π】

    2x-π/6∈【π/3,5π/6】

    f(x)max=√3/2 +1/2