因A^3+2A-3E=0
变形A^3+2A=3E
即A[1/3(A^2+2E)]=E
也就是存在B=1/3 (A^2+2E)使得AB=BA=E
按定义知A可逆
且逆矩阵A^(-1)=1/3(A^2+2E)