f(x)=2sin^2(x)-cos^2(x)+2sinxcosx-1
=2sin^2(x)-1-cos^2(x)+1/2+2sinxcosx-1/2
=1/2cos2x+sin2x-1/2
=√5/2[1/√5cos2x+2/√5sin2x]-1/2
=√5/2cos(2x+t)-1/2
其中sint=1/√5,cost=2/√5
因此f(x)的值域是[-√5/2-1/2,√5/2-1/2]
f(x)=2sin^2(x)-cos^2(x)+2sinxcosx-1
=2sin^2(x)-1-cos^2(x)+1/2+2sinxcosx-1/2
=1/2cos2x+sin2x-1/2
=√5/2[1/√5cos2x+2/√5sin2x]-1/2
=√5/2cos(2x+t)-1/2
其中sint=1/√5,cost=2/√5
因此f(x)的值域是[-√5/2-1/2,√5/2-1/2]