向量OA、OB、OC,设OA=λ1OB+λ2OC.则λ1+λ2=1等价于A、B、C三点共线.证明如下:
λ1=1-λ2,代入,有OA=λ1OB+(1-λ1)OC,即:OA-OC=λ1(OB-OC),CA=λ1CB,即CA与CB共线,也就是点A、B、C一直线.
向量OA、OB、OC,设OA=λ1OB+λ2OC.则λ1+λ2=1等价于A、B、C三点共线.证明如下:
λ1=1-λ2,代入,有OA=λ1OB+(1-λ1)OC,即:OA-OC=λ1(OB-OC),CA=λ1CB,即CA与CB共线,也就是点A、B、C一直线.