证明: ∵AB=AD、AF=AG、BF=DG ∴△ABF≌△ADG (SSS) ∴∠BAF=∠DAG ∵∠BAG=∠BAF+∠FAG,∠FAD=∠DAG+∠FAG ∴∠BAG=∠FAD
已知:AB=AD,AF=AG,BF=DG.求证:∠BAG=∠DAF
1个回答
相关问题
-
已知,如图,AG=DG,AB⊥CE,EB⊥CB,AD⊥BC,(1)求证:BF=EF
-
如图,已知AG/AB=AF/AD,CE//BC求证EF//CD
-
已知AD//EF,∠1=∠2,求证:AB//DG(有图)
-
如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.
-
如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.
-
如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.
-
如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.
-
如图所示,已知AE⊥AB,AF⊥AC,AF=AC,求证:(1)EC=BF(2)EC⊥BF
-
如图5,已知AD‖EF,∩1=∩2,求证:AB‖DG
-
已知,如图,AE⊥AD,AF⊥AB,AB//CD,AE=AD,AF=CD.求证AC=EF.