(1)
直线L:mx-y+1-m=0,y - 1 = m(x - 1,总过点D(1,1)
圆C的圆心C(0,1),半径r = √5
D,C的纵坐标相同,距离为横坐标之差1 < 半径r
D在圆内,直线L与圆C总有两个交点
(2)
设AB的中点为E,
|AB| = √7,|AE| = √7/2
|CE| = C与直线L的距离d = |-1 + 1 - m|/√(m² + 1) = |m|/√(m² + 1)
r² = CA² = CE² + AE²
5 = d² + 7/4
d² = 13/4 = m²/(m² + 1)
m²/(m² + 1) < 1,与13/4 = m²/(m² + 1)矛盾,题有问题
改后可仿照做.