①(1-x^2)(1+x^2)-(1-2x^2)^2
=1-x^4-1+4x^2-4x^4
=4x^2-5x^4
②(-2b^3分之a^2)^3除以4b^2分之3a^4
=-2a^2/3b
③(2x/x-1)+(1/x+3)-(x^2+2x-3分之3x+5)
=[2x(x+3)+(x+1)-(3x+5)]/x^2+2x-3
=(2x^2+4x-6)/x^2+2x-3
=2
①(1-x^2)(1+x^2)-(1-2x^2)^2
=1-x^4-1+4x^2-4x^4
=4x^2-5x^4
②(-2b^3分之a^2)^3除以4b^2分之3a^4
=-2a^2/3b
③(2x/x-1)+(1/x+3)-(x^2+2x-3分之3x+5)
=[2x(x+3)+(x+1)-(3x+5)]/x^2+2x-3
=(2x^2+4x-6)/x^2+2x-3
=2