解题思路:可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=DF,而∠MDN和∠FDE都是60°加上一个∠NDF,因此三角形MDF和EDN就全等了(ASA).由此可得出EN=MF,∠DNE=∠DMB,已知了BD=DF,DM=DN,因此三角形DBM≌三角形DFN,因此∠DFN=∠DBM=120°,因此∠DFN是三角形DFE的外角因此N,F,E在同一直线上.
判断:EN与MF相等(或EN=MF),点F在直线NE上,
理由如下:
连接DE,DF,EF.
∵△ABC是等边三角形,
∴AB=AC=BC.
又∵DE,DF,EF为三角形的中位线.
∴DE=DF=EF,∠FDE=60°.
又∵∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,
∴∠MDF=∠NDE,
在△DMF和△DNE中,
DE=DF
∠MDF=∠NDE
DM=DN,
∴△DMF≌△DNE(SAS),
∴MF=NE;
又∵∠BDM+∠BDN=60°,∠NDF+∠BDN=60°,
∴∠BDM=∠NDF,
∴∠DFN=∠DBM=120°.
又∵∠DFE=60°.
∴∠NFE=∠DFN+∠DFE=180°.
可得点F在NE上.
点评:
本题考点: 全等三角形的判定与性质;等边三角形的性质.
考点点评: 此题综合运用了等边三角形的性质和判定、全等三角形的判定和性质.全等是证明线段相等的常用方法,证明三点共线的方法是利用平角定义.