an=Sn-S(n-1)
所以Sn²=[Sn-S(n-1)](Sn-1/2)
=Sn²-S(n-1)Sn-1/2*Sn+1/2*S(n-1)
所以-S(n-1)Sn-1/2*Sn+1/2*S(n-1)=0
S(n-1)Sn=1/2*Sn-1/2*S(n-1)
两边除以S(n-1)Sn
1=1/2*[Sn-S(n-1)]/[S(n-1)Sn]
所以2=1/Sn-1/S(n-1)
即1/Sn是等差数列,d=2
S1=a1=1
所以所以1/Sn=1/S1+2(n-1)=2n-1
Sn=1/(2n-1)